Some Non-existence Results for the Semilinear Schrödinger Equation without Gauge Invariance

نویسنده

  • MASAHIRO IKEDA
چکیده

We consider the Cauchy problem for the semilinear Schrödinger equation (NLS) { (i∂t +∆)u = μ|u|, (t, x) ∈ [0, Tλ)× R, u(0, x) = λf(x), x ∈ R, where u = u(t, x) is a C-valued unknown function, μ ∈ C\{0}, p > 1, λ ≥ 0, f = f(x) is a C-valued given function and Tλ is a maximal existence time of the solution. Our first aim in the present paper is to prove a large data blow-up result for (NLS) in H-critical or H-subcritical case p ≤ ps := 1 + 4/(d− 2s), for some s ≥ 0. More precisely, we show that in the case 1 < p ≤ ps, for a suitable H-function f , there exists λ0 > 0 such that for any λ > λ0, the following estimates Tλ ≤ Cλ−κ and { limt→Tλ−0 ∥u(t)∥Hs = ∞, (if 1 < p < ps), ∥u∥Lrt (0,Tλ;B ρ,2) = ∞, (if p = ps), hold, where κ,C > 0 are constants independent of λ and (r, ρ) is an admissible pair (see Theorem 2.3). Our second aim is to prove non-existence local weak-solution for (NLS) in the Hsupercritical case p > ps, which means that if p > ps, then there exists a H -function f such that if there exist T > 0 and a weak-solution u to (NLS) on [0, T ), then λ = 0 (see Theorem 2.5).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence result of a fuzzy implicit integro-differential equation in semilinear Banach space

In this paper‎, ‎the existence and uniqueness of the ‎solution of a nonlinear fully fuzzy implicit integro-differential equation‎ ‎arising in the field of fluid mechanics is investigated. ‎First,‎ an equivalency lemma ‎is ‎presented ‎by‎ which the problem understudy ‎is ‎converted‎ to ‎the‎ two different forms of integral equation depending on the kind of differentiability of the solution. Then...

متن کامل

Multi-bump Solutions for a Strongly Indefinite Semilinear Schrödinger Equation Without Symmetry or convexity Assumptions

In this paper, we study the following semilinear Schrödinger equation with periodic coefficient: −△u + V (x)u = f(x, u), u ∈ H1(RN). The functional corresponding to this equation possesses strongly indefinite structure. The nonlinear term f(x, t) satisfies some superlinear growth conditions and need not be odd or increasing strictly in t. Using a new variational reduction method and a generaliz...

متن کامل

A two-phase free boundary problem for a semilinear elliptic equation

In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary‎. ‎We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...

متن کامل

Almost Global Existence for Some Semilinear Wave Equations

Our results and approach are related to previous work in the non-obstacle case. In particular, in [2], almost global existence was shown for general, quadratic quasilinear wave equations in Minkowski space, using fully the invariance properties of the wave operator under translations, spatial rotations, scaling, and Lorentz boosts . Subsequently, in [5], the almost global existence of certain d...

متن کامل

Cutoff Resolvent Estimates and the Semilinear Schrödinger Equation

This paper shows how abstract resolvent estimates imply local smoothing for solutions to the Schrödinger equation. If the resolvent estimate has a loss when compared to the optimal, non-trapping estimate, there is a corresponding loss in regularity in the local smoothing estimate. As an application, we apply well-known techniques to obtain well-posedness results for the semi-linear Schrödinger ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015